Harmonijska analiza je grana matematike koja se bavi reprezentacijom funkcija ili signala kao superpozicije osnovnih talasa, kao i studiranjem i generalizacijom notacije Furijeovih redova i Furijeovih trasformacija (i.e. proširena forma Furijeove analize). Tokom zadnja dva veka, to je postala značajna tema sa primenama u raznim oblastima kao što su teorija brojeva, teorija reprezentacije, obrada signala, kvantna mehanika, analiza plime i neuronauka.

Harmonici boja. Grafik harmonijske analize pokazuje kako različite talasne dužine formiraju interakcije sa crvenim svetlom. Na rastojanju od λ/2 (polovini talasne dužine), crvena je savršeno sinhronizovana sa svojim drugim harmonikom u ultraljubičastoj svetlosti. Sve ostale talasne dužine u vizuelnom spektru imaju manju razliku od λ/2 među sobom, formirajući harmonijske oscilacije u kombinovanim talasima. Kod λ/14, oscilacije kruže svakog 14. talasa, dok na λ/8 one kruže svakog 8. talasa. Oscilacije su najbrže na λ/4, kad kruže na svakom četvrtom talasu, dok na λ/3 kruže na svakom 7. talasu, a na λ/2,5 kruže na svakom 13-tom. U donjoj sekciji je prikazano kako λ/4 harmonika deluje u vidljivu svetlosti (zeleno i crveno), fotografisano na u optičkoj ravni.

Termin „harmonici” potiče od starogrčke reči harmonikos, sa značenjem „vešt u muzici”.[1] U fizičkim problemima sopstvenih vrednosti, ovaj termin je počeo da označava talase čije su frekvencije celobrojni umnošci jedan drugog, kao što su frekvencije harmonika muzičkih nota, mada je taj pojam generalizovan izvan početnog značenja.

Klasična Furijeova transformacija na Rn je još uvek oblast tekućih istraživanja, posebno u pogledu Furijeove transformacije na generalnijim objektima kao što su modifikovane raspodele. Na primer, ako se uslove izvesni zahtevi na distribuciju f, može se pokušati da se oni transliraju u smislu Furijeove transformacije f. Primer toga je Pali-Vinerova teorema. Ona neposredno podrazumeva da ako je f nenulta raspodela kompaktnih nosaćih funkcija, onda njena Furijeova transformacija nikada nije kompaktno podržana. Ovo je vrlo elementarni oblik principa neodređenosti u okruženju harmonijske analize. Takođe pogledajte: konvergenciju Furijeove serije.

Furijeove serije mogu se pogodno proučavati u kontekstu Hilbertovih prostora, što pruža vezu između harmonijske analize i funkcionalne analize.

Primenjena harmonijska analiza

уреди
 
Vremenski signal bas gitare A note otvorene žice (55 Hz)
 
Furijeva transformacija vremenskog signala bas gitare A note otvorene žice (55 Hz)[2]

Mnoge primene harmonijske analize u nauci i inženjerstvu počinju idejom ili hipotezom da je fenomen ili signal sastavljen od sume pojedinačnih oscilatornih komponenti. Okeanska plima i vibrirajuće strune uobičajeni su i jednostavni primeri. Uobičajen teoretski pristup je da pokuša da se opiše sistem diferencijalnom jednačinom ili sistemom jednačina da bi se predvidele suštinske karakteristike, uključujući amplitudu, frekvenciju i faze oscilacionih komponenti. Specifične jednačine zavise od polja, mada teorije uglavnom pokušavaju da odaberu jednačine koje predstavljaju glavne primenljive principe.

Eksperimentalni pristup se obično sastoji od prikupljanja podataka koji tačno kvantifikuju fenomen. Na primer, u istraživanju plima, eksperimentalista bi pribavio podatke o dubini vode kao funkcije vremena u dovoljno blisko razmaknutim intervalima da se vidi svaka oscilacija i tokom dovoljno dugog perioda da su obuhvaćeni višestruki oscilacioni periodi. U izučavanju vibrirajućih struna, uobičajeno je da eksperimentalista pribavi uzorke zvučnih talasnih formi uzorkovane brzinom koja je najmanje dvostruko veća od najviše očekivane frekvencije i u trajanju mnogo puta većem od očekivane najniže frekvencije.

Na primer, gornji signal prikazan sa desne strane je zvučni talasni oblik bas-gitare koja je svirana otvorenom žicom i koja odgovara A noti sa osnovnom frekvencijom od 55 Hz. Talasni oblik izgleda oscilatorno, ali je složeniji od jednostavnog sinusnog talasa, što ukazuje na prisustvo dodatnih talasa. Različite talasne komponente koje doprinose zvuku mogu se otkriti primenom tehnike matematičke analize poznate kao Furijeova transformacija, čiji je rezultat prikazan na donjoj slici. Uočljivo je da postoji istaknuti pik na 55 Hz, kao i da postoje i drugi pikovi na 110 Hz, 165 Hz i na drugim frekvencijama koje odgovaraju celobrojnim umnošcima od 55 Hz. U ovom slučaju je 55 Hz identifikovano kao osnovna frekvencija vibracije niza, a celobrojni umnošci su poznati kao harmonici.

Apstraktna harmonijska analiza

уреди
 
Lord Kelvinov harmonijski analator iz 1876. godien, Hunterijanski muzej, Glazgov

Jedna od najmodernijih grana harmonijske analize, koji koreni su formirani sredinom 20. veka, jeste analiza topoloških grupa. Osnovne motivišuće ideje su razne Furijeove transformacije, koje se mogu generalizovati do transformacije funkcija definisanih na Hausdorfovim lokalno kompaktnim topološkim grupama.

Teorija za abelove lokalno kompaktne grupe naziva se Pontrjaginova dualnost. Harmonijska analiza proučava svojstva te dualnosti i Furijeove transformacije i pokušava da proširi te karakteristike na različita podešavanja, na primer na slučaj neabelovskih Lijevih grupa.

Za opšte neabelovske lokalno kompaktne grupe, harmonijska analiza je usko povezana sa teorijom reprezentacija unitarnih grupa. Za kompaktne grupe, Peter-Vajlova teorema objašnjava kako se mogu dobiti harmonici odabirom jednog nereducibilnog prikaza iz svake ekvivalentne klase reprezentacija. Ovaj izbor harmonika ima neka od korisnih svojstava klasične Furijeove transformacije u smislu prenošenja konvolucija do tačno određenih proizvoda, ili na neki drugi način pokazuje određeno razumevanje ishodišne strukture grupa. Takođe pogledajte nekomutativnu harmonijsku analizu.

Ako grupa nije ni abelovska, ni kompaktna, za sada nije poznata opšte zadovoljavajuća teorija („zadovoljavajuća” u smislu da je barem jaka, koliko i Planšerelova teorema). Međutim, analizirani su mnogi konkretni slučajevi, na primer SLn. U ovom slučaju reprezentacije u beskonačnim dimenzijama igraju presudnu ulogu.

Druge grane

уреди

Vidi još

уреди

Reference

уреди

Literatura

уреди

Spoljašnje veze

уреди