Bretšnajderova formula se koristi u geometriji za određivanje površine četvorougla , i glasi
Četvorougao
P
=
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
s
−
d
)
−
a
b
c
d
cos
2
α
+
γ
2
,
{\displaystyle P={\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\cos ^{2}{\frac {\alpha +\gamma }{2}}}},}
pri čemu su, a , b , c i d stranice četvorougla, s je polovina obima četvorougla , a
α
{\displaystyle \alpha \,}
i
γ
{\displaystyle \gamma \,}
naspramni uglovi.
Bretšnajderova formula daje površinu četvorougla bez obzira da li je on tetivan ili nije.
Ako se površina četvorougla označi sa P , onda važi
P
=
povrsina
△
B
D
C
+
povrsina
△
A
D
B
=
1
2
a
b
sin
γ
+
1
2
c
d
sin
α
{\displaystyle {\begin{aligned}P&={\text{povrsina }}\triangle BDC+{\text{povrsina }}\triangle ADB\\&={\tfrac {1}{2}}ab\sin \gamma +{\tfrac {1}{2}}cd\sin \alpha \end{aligned}}}
Odatle je
4
P
2
=
(
a
b
)
2
sin
2
γ
+
(
c
d
)
2
sin
2
α
+
2
a
b
c
d
sin
α
sin
γ
.
{\displaystyle 4P^{2}=(ab)^{2}\sin ^{2}\gamma +(cd)^{2}\sin ^{2}\alpha +2abcd\sin \alpha \sin \gamma .\,}
Prema kosinusnoj teoremi važi
a
2
+
b
2
−
2
a
b
cos
γ
=
c
2
+
d
2
−
2
c
d
cos
α
,
{\displaystyle a^{2}+b^{2}-2ab\cos \gamma =c^{2}+d^{2}-2cd\cos \alpha ,\,}
pošto su obe strane izraza jednake kvadratu dužine dijagonale BD .
Ukoliko se sabirci pregrupišu i obe strane kvadriraju, jednakost se može zapisati na sledeći način:
1
4
(
c
2
+
d
2
−
a
2
−
b
2
)
2
=
(
a
b
)
2
cos
2
γ
+
(
c
d
)
2
cos
2
α
−
2
a
b
c
d
cos
α
cos
γ
.
{\displaystyle {\tfrac {1}{4}}(c^{2}+d^{2}-a^{2}-b^{2})^{2}=(ab)^{2}\cos ^{2}\gamma +(cd)^{2}\cos ^{2}\alpha -2abcd\cos \alpha \cos \gamma .\,}
Sabiranjem dobijene jednakosti sa gornjom formulom za
4
P
2
{\displaystyle 4P^{2}}
dobija se
4
P
2
+
1
4
(
c
2
+
d
2
−
a
2
−
b
2
)
2
=
(
a
b
)
2
+
(
c
d
)
2
−
2
a
b
c
d
cos
(
α
+
γ
)
.
{\displaystyle 4P^{2}+{\tfrac {1}{4}}(c^{2}+d^{2}-a^{2}-b^{2})^{2}=(ab)^{2}+(cd)^{2}-2abcd\cos(\alpha +\gamma ).\,}
Posle sređivanja, biće:
16
P
2
=
4
(
a
2
b
2
+
c
2
d
2
)
−
(
c
2
+
d
2
−
a
2
−
b
2
)
2
−
8
a
b
c
d
cos
(
α
+
γ
)
.
{\displaystyle 16P^{2}=4(a^{2}b^{2}+c^{2}d^{2})-(c^{2}+d^{2}-a^{2}-b^{2})^{2}-8abcd\cos(\alpha +\gamma ).\,}
Ukoliko se prvi član zbira sa desne strane dopuni do kvadrata binoma, dobija se:
16
P
2
=
4
(
a
b
+
c
d
)
2
−
(
c
2
+
d
2
−
a
2
−
b
2
)
2
−
8
a
b
c
d
[
1
+
cos
(
α
+
γ
)
]
.
{\displaystyle 16P^{2}=4(ab+cd)^{2}-(c^{2}+d^{2}-a^{2}-b^{2})^{2}-8abcd[1+\cos(\alpha +\gamma )].\,}
Ako se, zatim, rastavi razlika kvadrata sa desne strane jednakosti i ako se primeni formula za polovinu ugla na treći sabirak, dobija se:
16
P
2
=
[
2
(
a
b
+
c
d
)
−
(
c
2
+
d
2
−
a
2
−
b
2
)
]
[
2
(
a
b
+
c
d
)
+
(
c
2
+
d
2
−
a
2
−
b
2
)
]
−
16
a
b
c
d
cos
2
α
+
γ
2
,
{\displaystyle 16P^{2}=[2(ab+cd)-(c^{2}+d^{2}-a^{2}-b^{2})][2(ab+cd)+(c^{2}+d^{2}-a^{2}-b^{2})]-16abcd\cos ^{2}{\frac {\alpha +\gamma }{2}},\,}
odnosno
16
P
2
=
[
(
a
+
b
)
2
−
(
c
−
d
)
2
]
[
(
c
+
d
)
2
−
(
a
−
b
)
2
]
−
16
a
b
c
d
cos
2
α
+
γ
2
.
{\displaystyle 16P^{2}=[(a+b)^{2}-(c-d)^{2}][(c+d)^{2}-(a-b)^{2}]-16abcd\cos ^{2}{\frac {\alpha +\gamma }{2}}.\,}
Prethodna jednakost može se zapisati i ovako:
16
P
2
=
(
a
+
b
+
c
−
d
)
(
a
+
b
−
c
+
d
)
(
c
+
d
+
a
−
b
)
(
c
+
d
−
a
+
b
)
−
16
a
b
c
d
cos
2
α
+
γ
2
.
{\displaystyle 16P^{2}=(a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-a+b)-16abcd\cos ^{2}{\frac {\alpha +\gamma }{2}}.}
Uzevši u obzir da je poluobim četvorougla
s
=
a
+
b
+
c
+
d
2
,
{\displaystyle s={\frac {a+b+c+d}{2}},}
dobija se
16
P
2
=
16
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
s
−
d
)
−
16
a
b
c
d
cos
2
α
+
γ
2
{\displaystyle 16P^{2}=16(s-a)(s-b)(s-c)(s-d)-16abcd\cos ^{2}{\frac {\alpha +\gamma }{2}}}
odakle sledi Bretšnajderova formula.
Povezanost sa drugim formulama
uredi