Митогеном-активирана протеинска киназа 1

Mitogenom-aktivirana proteinska kinaza 1, takođe poznata kao MAPK1, p42MAPK, i ERK2, je enzim koji je kod ljudi kodiran MAPK1 genom.[1]

Mitogenom-aktivirana proteinska kinaza 1
PDB prikaz baziran na PDB: 1erk​.
Dostupne strukture
1erk​, 1gol​, 1pme​, 1tvo​, 1wzy​, 2erk​, 2fys​, 2gph​, 2ojg​, 2oji​, 2ojj​, 3erk​, 4erk
Identifikatori
Simboli MAPK1; p38; ERK; p40; ERK2; ERT1; MAPK2; P42MAPK; PRKM1; PRKM2; p41; p41mapk
Vanjski ID OMIM176948 MGI1346858 HomoloGene37670 GeneCards: MAPK1 Gene
Pregled RNK izražavanja
podaci
Ortolozi
Vrsta Čovek Miš
Entrez 5594 26413
Ensembl ENSG00000100030 ENSMUSG00000063358
UniProt P28482 Q3UF82
RefSeq (mRNA) NM_002745 NM_001038663
RefSeq (protein) NP_002736 NP_001033752
Lokacija (UCSC) Chr 22:
20.45 - 20.55 Mb
Chr 16:
16.9 - 16.96 Mb
PubMed pretraga [1] [2]

Funkcije

уреди

Protein kodiran ovim genom je član familije MAP kinaza. Mitogenom-aktivirane proteinske kinaze, su takođe poznate kao ekstracelularnim signalom regulisane kinaze (ERK). One deluju kao tačka integracije višestrukih biohemijskih signala, i učestvuju u širokom varijetetu ćelijskih procesa kao što su proliferacija, diferencijacija, i regulacija transkripcije i razvoja. Prirekvizit aktivacije ove kinaze je njena fosforilisana uzvodnim kinazama. Nakon aktivacije, ova kinaza se translocira u jedro stimulisanih ćelija, gde ona fosforiliše proteine jedra. Dve alternativno splajsovane transkriptne varijante, koje se razlikuju u netranskribovanim regionima, kodiraju isti protein.[2]

Interakcije

уреди

Za MAPK1 je bilo pokazano da interaguje sa TSC2,[3] PEA15,[4] DUSP1,[5][6] NEK2,[7] DUSP3,[8] STAT5A,[9][10] MAPK14,[11][12] FHL2,[13] TNIP1,[14] RPS6KA3,[15][16] RPS6KA2,[15][17] MAP2K1,[11][18][19][20][21][22] RPS6KA1,[16][17][23] PTPN7,[24][25] MKNK1,[26] CIITA,[27] TOB1,[28] Fosfatidiletanolamin vezujući protein 1,[19] DUSP22,[29] Myc,[30][31][32] ADAM17,[33] SORBS3,[34] ELK1,[23][35] VAV1,[36][37] HDAC4,[38] MKNK2,[26][39] MAP3K1[40] i UBR5.[23]

Vidi još

уреди

Reference

уреди
  1. ^ Owaki H, Makar R, Boulton TG, Cobb MH, Geppert TD (1992). „Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs”. Biochem. Biophys. Res. Commun. 182 (3): 1416—22. PMID 1540184. doi:10.1016/0006-291X(92)91891-S. 
  2. ^ „Entrez Gene: MAPK1 mitogen-activated protein kinase 1”. 
  3. ^ Ma, Li; Chen Zhenbang; et al. (2005). „Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis”. Cell. United States. 121 (2): 179—93. ISSN 0092-8674. PMID 15851026. doi:10.1016/j.cell.2005.02.031. 
  4. ^ Formstecher, E; Ramos J W; et al. (2001). „PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase”. Dev. Cell. United States. 1 (2): 239—50. ISSN 1534-5807. PMID 11702783. doi:10.1016/S1534-5807(01)00035-1. 
  5. ^ Slack, D N; Seternes O M; et al. (2001). „Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1”. J. Biol. Chem. United States. 276 (19): 16491—500. ISSN 0021-9258. PMID 11278799. doi:10.1074/jbc.M010966200. 
  6. ^ Calvisi, Diego F; Pinna Federico; et al. (2008). „Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma”. Cancer Res. United States. 68 (11): 4192—200. PMID 18519678. doi:10.1158/0008-5472.CAN-07-6157. 
  7. ^ Lou, Yang; Xie Wei; et al. (2004). „Nek2A specifies the centrosomal localization of Erk2”. Biochem. Biophys. Res. Commun. United States. 321 (2): 495—501. ISSN 0006-291X. PMID 15358203. doi:10.1016/j.bbrc.2004.06.171. 
  8. ^ Todd, J L; Tanner K G; Denu J M (1999). „Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway”. J. Biol. Chem. UNITED STATES. 274 (19): 13271—80. ISSN 0021-9258. PMID 10224087. doi:10.1074/jbc.274.19.13271. 
  9. ^ Pircher, T J; Petersen H; et al. (1999). „Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a”. Mol. Endocrinol. UNITED STATES. 13 (4): 555—65. ISSN 0888-8809. PMID 10194762. doi:10.1210/me.13.4.555. 
  10. ^ Dinerstein-Cali, H; Ferrag F; et al. (2000). „Growth hormone (GH) induces the formation of protein complexes involving Stat5, Erk2, Shc and serine phosphorylated proteins”. Mol. Cell. Endocrinol. IRELAND. 166 (2): 89—99. ISSN 0303-7207. PMID 10996427. doi:10.1016/S0303-7207(00)00277-X. 
  11. ^ а б Sanz-Moreno, Victoria; Casar Berta; Crespo Piero (2003). „p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels”. Mol. Cell. Biol. United States. 23 (9): 3079—90. ISSN 0270-7306. PMC 153192 . PMID 12697810. doi:10.1128/MCB.23.9.3079-3090.2003. 
  12. ^ Tanoue, T; Maeda R; et al. (2001). „Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions”. EMBO J. England. 20 (3): 466—79. ISSN 0261-4189. PMC 133461 . PMID 11157753. doi:10.1093/emboj/20.3.466. 
  13. ^ Purcell, Nicole H; Darwis Dina; et al. (2004). „Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes”. Mol. Cell. Biol. United States. 24 (3): 1081—95. ISSN 0270-7306. PMC 321437 . PMID 14729955. doi:10.1128/MCB.24.3.1081-1095.2004. 
  14. ^ Zhang, Shengliang; Fukushi Masaya; et al. (2002). „A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling”. Biochem. Biophys. Res. Commun. United States. 297 (1): 17—23. ISSN 0006-291X. PMID 12220502. doi:10.1016/S0006-291X(02)02086-7. 
  15. ^ а б Zhao, Y; Bjorbaek C; Moller D E (1996). „Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases”. J. Biol. Chem. UNITED STATES. 271 (47): 29773—9. ISSN 0021-9258. PMID 8939914. doi:10.1074/jbc.271.47.29773. 
  16. ^ а б Smith, J A; Poteet-Smith C E; et al. (1999). „Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo”. J. Biol. Chem. UNITED STATES. 274 (5): 2893—8. ISSN 0021-9258. PMID 9915826. doi:10.1074/jbc.274.5.2893. 
  17. ^ а б Roux, Philippe P; Richards Stephanie A; Blenis John (2003). „Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity”. Mol. Cell. Biol. United States. 23 (14): 4796—804. ISSN 0270-7306. PMC 162206 . PMID 12832467. doi:10.1128/MCB.23.14.4796-4804.2003. 
  18. ^ Robinson, Fred L; Whitehurst Angelique W; et al. (2002). „Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1”. J. Biol. Chem. United States. 277 (17): 14844—52. ISSN 0021-9258. PMID 11823456. doi:10.1074/jbc.M107776200. 
  19. ^ а б Yeung, K; Janosch P; et al. (2000). „Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein”. Mol. Cell. Biol. UNITED STATES. 20 (9): 3079—85. ISSN 0270-7306. PMC 85596 . PMID 10757792. doi:10.1128/MCB.20.9.3079-3085.2000. 
  20. ^ Wunderlich, W; Fialka I; et al. (2001). „A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment”. J. Cell Biol. United States. 152 (4): 765—76. ISSN 0021-9525. PMC 2195784 . PMID 11266467. doi:10.1083/jcb.152.4.765. 
  21. ^ Xu Be, Be; Stippec S; et al. (2001). „Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking”. J. Biol. Chem. United States. 276 (28): 26509—15. ISSN 0021-9258. PMID 11352917. doi:10.1074/jbc.M102769200. 
  22. ^ Chen, Z; Cobb M H (2001). „Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2”. J. Biol. Chem. United States. 276 (19): 16070—5. ISSN 0021-9258. PMID 11279118. doi:10.1074/jbc.M100681200. 
  23. ^ а б в Eblen, Scott T; Kumar N Vinay; et al. (2003). „Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs”. J. Biol. Chem. United States. 278 (17): 14926—35. ISSN 0021-9258. PMID 12594221. doi:10.1074/jbc.M300485200. 
  24. ^ Pettiford, S M; Herbst R (2000). „The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP”. Oncogene. ENGLAND. 19 (7): 858—69. ISSN 0950-9232. PMID 10702794. doi:10.1038/sj.onc.1203408. 
  25. ^ Saxena, M; Williams S; et al. (1999). „Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)”. J. Biol. Chem. UNITED STATES. 274 (17): 11693—700. ISSN 0021-9258. PMID 10206983. doi:10.1074/jbc.274.17.11693. 
  26. ^ а б Waskiewicz, A J; Flynn A; et al. (1997). „Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2”. EMBO J. ENGLAND. 16 (8): 1909—20. ISSN 0261-4189. PMC 1169794 . PMID 9155017. doi:10.1093/emboj/16.8.1909. 
  27. ^ Voong, Lilien N; Slater Allison R; et al. (2008). „Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator”. J. Biol. Chem. United States. 283 (14): 9031—9. ISSN 0021-9258. PMC 2431044 . PMID 18245089. doi:10.1074/jbc.M706487200. 
  28. ^ Maekawa, Momoko; Nishida Eisuke; Tanoue Takuji (2002). „Identification of the Anti-proliferative protein Tob as a MAPK substrate”. J. Biol. Chem. United States. 277 (40): 37783—7. ISSN 0021-9258. PMID 12151396. doi:10.1074/jbc.M204506200. 
  29. ^ Aoyama, K; Nagata M; et al. (2001). „Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain”. J. Biol. Chem. United States. 276 (29): 27575—83. ISSN 0021-9258. PMID 11346645. doi:10.1074/jbc.M100408200. 
  30. ^ Jin, Zhaohui; Gao Fengqin; et al. (2004). „Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation”. J. Biol. Chem. United States. 279 (38): 40209—19. ISSN 0021-9258. PMID 15210690. doi:10.1074/jbc.M404056200. 
  31. ^ Gupta, S; Davis R J (1994). „MAP kinase binds to the NH2-terminal activation domain of c-Myc”. FEBS Lett. NETHERLANDS. 353 (3): 281—5. ISSN 0014-5793. PMID 7957875. doi:10.1016/0014-5793(94)01052-8. 
  32. ^ Tournier, C; Whitmarsh A J; et al. (1997). „Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase”. Proc. Natl. Acad. Sci. U.S.A. UNITED STATES. 94 (14): 7337—42. ISSN 0027-8424. PMC 23822 . PMID 9207092. doi:10.1073/pnas.94.14.7337. 
  33. ^ Díaz-Rodríguez, Elena; Montero Juan Carlos; et al. (2002). „Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding”. Mol. Biol. Cell. United States. 13 (6): 2031—44. ISSN 1059-1524. PMC 117622 . PMID 12058067. doi:10.1091/mbc.01-11-0561. 
  34. ^ Mitsushima, Masaru; Suwa Akira; et al. (2004). „Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin”. J. Biol. Chem. United States. 279 (33): 34570—7. ISSN 0021-9258. PMID 15184391. doi:10.1074/jbc.M402304200. 
  35. ^ Cano, E; Hazzalin C A; et al. (1995). „Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction”. J. Cell. Sci. ENGLAND. 108 ( Pt 11): 3599—609. ISSN 0021-9533. PMID 8586671. 
  36. ^ Song, J S; Gomez J; et al. (1996). „Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex”. J. Biol. Chem. UNITED STATES. 271 (43): 26962—70. ISSN 0021-9258. PMID 8900182. doi:10.1074/jbc.271.43.26962. 
  37. ^ Lee, I S; Liu Y; et al. (1997). „Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6”. FEBS Lett. NETHERLANDS. 401 (2-3): 133—7. ISSN 0014-5793. PMID 9013873. doi:10.1016/S0014-5793(96)01456-1. 
  38. ^ Zhou, X; Richon V M; et al. (2000). „Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras”. Proc. Natl. Acad. Sci. U.S.A. UNITED STATES. 97 (26): 14329—33. ISSN 0027-8424. PMC 18918 . PMID 11114188. doi:10.1073/pnas.250494697. 
  39. ^ Scheper, Gert C; Parra Josep L; et al. (2003). „The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization”. Mol. Cell. Biol. United States. 23 (16): 5692—705. ISSN 0270-7306. PMC 166352 . PMID 12897141. doi:10.1128/MCB.23.16.5692-5705.2003. 
  40. ^ Karandikar, M; Xu S; Cobb M H (2000). „MEKK1 binds raf-1 and the ERK2 cascade components”. J. Biol. Chem. UNITED STATES. 275 (51): 40120—7. ISSN 0021-9258. PMID 10969079. doi:10.1074/jbc.M005926200. 

Literatura

уреди

Spoljašnje veze

уреди