Полигонални број
У математици, полигонални број је број представљен у облику тачака или каменчића распоређених у облику правилног полигона. Тачке се сматрају алфама (јединицама). Ово је једна врста 2-димензионалних фигуралних бројева.
Дефиниција и примери
уредиБрој 10, на пример, може бити представљен као троугао (види троугаони број):
Али 10 не може бити квадрат. Број 9, са друге стране, може (види квадратни број):
Неки бројеви, као 36, могу бити представљени и као квадрат и као троугао (види квадратни троугаони бројеви):
По конвенцији, 1 је први полигонални број за било који број страна. Правило за проширење полигона на следећу величину је да се продуже две суседне стране у једном тренутку и да затим додајете потребне додатне стране између тих тачака. У наредним дијаграмима, сваки додатни слој је приказан као црвени.
Троугаони бројеви
уредиКвадратни бројеви
уредиПолигонални бројеви са већим бројем страна, као што су пентагони и хексагони, могу такође бити конструисани према овом правилу, иако тачке неће формирати перфектно правилну решетку као горе.
Пентагонални бројеви
уредиХексагонални бројеви
уредиФормула
уредиили
nth s-гонални број је такође повезан са троугаоним бројем Tn на следећи начин:
Онда:
Сваки хексагонални број је и троугаони број
уредиПримена горенаведене формуле:
за случај од 6 страна добијамо:
али како је:
следи да је:
Ово показује да је хексагонални број, једнак троугаоном броју, . Можемо наћи сваки хексагонални број једноставним узимањем непарних троугаоних бројева:
- 1, 3, 6, 10,15, 21, 28, 36, 45, 55, 66, ...
Табела вредности
уредиПрвих 6 вредности у колони Збир реципрочних вредности, за троугаони до октагоналног броја, произлази из објављеног решења за општи проблем, који такође даје општу формулу за било који број страна, у темину дигама функције.[1]
s | Име | Формула | н = 1 | н = 2 | н = 3 | н = 4 | н = 5 | н = 6 | н = 7 | н = 8 | н = 9 | н = 10 | Збир реципрочних бројева[1][2] | ОЕИС број |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Троугаони | ½(n²+n) | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | [1] | A000217 |
4 | Квадрат | n² = ½(2n² - 0n) | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | [1] | A000290 |
5 | Пентагонални | ½(3n² - n) | 1 | 5 | 12 | 22 | 35 | 51 | 70 | 92 | 117 | 145 | [1] | A000326 |
6 | Хексагонални | ½(4n² - 2n) | 1 | 6 | 15 | 28 | 45 | 66 | 91 | 120 | 153 | 190 | [1] | A000384 |
7 | Хептагонални | ½(5n² - 3n) | 1 | 7 | 18 | 34 | 55 | 81 | 112 | 148 | 189 | 235 | [1] | A000566 |
8 | Октагонални | ½(6n² - 4n) | 1 | 8 | 21 | 40 | 65 | 96 | 133 | 176 | 225 | 280 | [1] | A000567 |
9 | Нонагонални
(енегонални) |
½(7n² - 5n) | 1 | 9 | 24 | 46 | 75 | 111 | 154 | 204 | 261 | 325 | A001106 | |
10 | Декагонални | ½(8n² - 6n) | 1 | 10 | 27 | 52 | 85 | 126 | 175 | 232 | 297 | 370 | A001107 | |
11 | Хендекагонални | ½(9n² - 7n) | 1 | 11 | 30 | 58 | 95 | 141 | 196 | 260 | 333 | 415 | A051682 | |
12 | Додекагонални | ½(10n² - 8n) | 1 | 12 | 33 | 64 | 105 | 156 | 217 | 288 | 369 | 460 | A051624 | |
13 | Тридекагонални | ½(11n² - 9n) | 1 | 13 | 36 | 70 | 115 | 171 | 238 | 316 | 405 | 505 | A051865 | |
14 | Тетрадекагонални | ½(12n² - 10n) | 1 | 14 | 39 | 76 | 125 | 186 | 259 | 344 | 441 | 550 | A051866 | |
15 | Пентадекагонални | ½(13n² - 11n) | 1 | 15 | 42 | 82 | 135 | 201 | 280 | 372 | 477 | 595 | A051867 | |
16 | Хексадекагонални | ½(14n² - 12n) | 1 | 16 | 45 | 88 | 145 | 216 | 301 | 400 | 513 | 640 | A051868 | |
17 | Хептадекагонални | ½(15n² - 13n) | 1 | 17 | 48 | 94 | 155 | 231 | 322 | 428 | 549 | 685 | A051869 | |
18 | Октадекагонални | ½(16n² - 14n) | 1 | 18 | 51 | 100 | 165 | 246 | 343 | 456 | 585 | 730 | A051870 | |
19 | Енедекагонални | ½(17n² - 15n) | 1 | 19 | 54 | 106 | 175 | 261 | 364 | 484 | 621 | 775 | A051871 | |
20 | Икосагонални | ½(18n² - 16n) | 1 | 20 | 57 | 112 | 185 | 276 | 385 | 512 | 657 | 820 | A051872 | |
21 | Икосигенагонални | ½(19n² - 17n) | 1 | 21 | 60 | 118 | 195 | 291 | 406 | 540 | 693 | 865 | A051873 | |
22 | Икосидигонални | ½(20n² - 18n) | 1 | 22 | 63 | 124 | 205 | 306 | 427 | 568 | 729 | 910 | A051874 | |
23 | Икоситригонални | ½(21n² - 19n) | 1 | 23 | 66 | 130 | 215 | 321 | 448 | 596 | 765 | 955 | A051875 | |
24 | Икоситетрагонални | ½(22n² - 20n) | 1 | 24 | 69 | 136 | 225 | 336 | 469 | 624 | 801 | 1000 | A051876 | |
25 | Икосипентагонални | ½(23n² - 21n) | 1 | 25 | 72 | 142 | 235 | 351 | 490 | 652 | 837 | 1045 | A255184 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
10000 | Мириагонални | ½(9998n² - 9996n) | 1 | 10000 | 29997 | 59992 | 99985 | 149976 | 209965 | 279952 | 359937 | 449920 | A167149 |
Својство ове табеле се може изразити наредним идентитетом (види A086270):
са
Комбинације
уредис | т | Ред | ОЕИС број |
---|---|---|---|
4 | 3 | 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, ... | A001110 |
5 | 3 | 1, 210, 40755, 7906276, … | A014979 |
5 | 4 | 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, ... | A036353 |
6 | 3 | Сви хексагонални бројеви су и троугаони. | A000384 |
6 | 4 | Непарни троугаони квадратни бројеви. | A046177 |
6 | 5 | 1, 40755, 1533776805, … | A046180 |
7 | 3 | 1, 55, 121771, 5720653, … | A046194 |
7 | 4 | 1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, 729252434211108535809, 53306479301521270428241, 20744638830126197732344369, 1516379800105728357531817761, 110843467413344235941816109721, 43135613687078894324987720634481, 3153102533906718276539864534846601, … | A036354 |
7 | 5 | 1, 4347, 16701685, 64167869935, … | A048900 |
7 | 6 | 1, 121771, 12625478965, … | A048903 |
8 | 3 | 1, 21, 11781, 203841, … | A046183 |
8 | 4 | 1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 2328280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321, … | A036428 |
8 | 5 | 1, 176, 1575425, 234631320, … | A046189 |
8 | 6 | 1, 11781, 113123361, … | A046192 |
8 | 7 | 1, 297045, 69010153345, … | A048906 |
9 | 3 | 1, 325, 82621, 20985481, … | A048909 |
9 | 4 | 1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641, 5996832038649, 708304623404049, 5385148492712041, 636056763057925561, 4835857349623374369, 571178264921393749929, 4342594514813297471521, 512917445842648529510881, 3899645038444991506051689, 460599295188433458107021409, 3501876901929087559136945401, 413617654161767402731575714601, … | A036411 |
9 | 5 | 1, 651, 180868051, … | A048915 |
9 | 6 | 1, 325, 5330229625, … | A048918 |
9 | 7 | 1, 26884, 542041975, … | A048921 |
9 | 8 | 1, 631125, 286703855361, … | A048924 |
10 | 3 | 1, 10, 1540, 1777555, 13773376, 2051297326, 15894464365, 2367195337045, 18342198104230, ... | |
10 | 4 | 1 и ниједан други. | |
11 | 4 | 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, ... | |
12 | 4 | 1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161, 771611174812552365885242944, 36249300518428057295172448225, 1702945513191306140507219823649, 80002189819472960546544159263296, 3758399976002037839547068265551281, 176564796682276305498165664321646929, 8294787044090984320574239154851854400, 389678426275593986761491074613715509889, 18306591247908826393469506267689777110401, 860020110225439246506305303506805808678976, 40402638589347735759402879758552183230801489, 1898063993589118141445429043348445806038991025, 89168605060099204912175762157618400700601776704, ... | |
13 | 4 | 1, 36, 35721, 34999056, 896703025, 34291262041, 878568782400, 860801272542225, ... | |
14 | 4 | 1, 441, 14161, 4239481, 135978921, 40707501121, 1305669590281, 390873421529361, 12537039269904241, 3753166552817428201, ... | |
15 | 4 | 1, 3025, 5997601, 165148201, ... | |
16 | 4 | 1, 16, 400, 4225, 101761, ... | |
18 | 4 | 1, 100, 1936, 116281, 2235025, 134189056, 2579217796, 154854055225, 2976415102441, 178701445541476, 3434780449000000, ... | |
22 | 4 | 1, 729, 284089, 3900625, 15175959521, 590725976569, 8110813506601, 3156387347610225, 1228333148092290241, 16865317394711073289, 6563271907899976822281, 2554149271482890096235025, 35069100108493095964960369, ... | |
28 | 4 | 1, 81, 3136, 30625, ... | |
30 | 4 | 1, 203401, 1819801, 164024190001, 1467492382801, 132269434866199801, 1183388792474889001, 106662336814809228952801, 954287089027867949018401, 86012721732003522411131649001, 769539017165067381031862931001, 69360830830024442142566574789968401, 620557802518990379109828463337266801, 55932712702907357470917967521368968071001, 500419053066149340677758825111066761145801, ... | |
32 | 4 | 1, 1089, 9025, 4190209, 34680321, 16098788161, 133241790529, 61851539930625, 511914924538369, 237633600314679361, 1966777006834629441, 912988230557458180609, 7556356748343721780225, 3507700544168154015226689, 29031520660359572245001281, 13476584577705817169042764801, 111539094820744728221573147649, 51777034439845205395308287145025, 428533173269780585467711788272449, 198927352841300701422957270168427521, 1646424340163402188622220468969607681, 764278837839242855021796436678811396929, 6325561886374617938905985574069444444225, 2936359096051018207693040486762723218579969, ... | |
40 | 4 | 1, 576, 123201, ... | |
44 | 4 | 1, 256, 1521, 136161, 802816, 71757841, 423083761, 37816247296, 222964340481, ... | |
50 | 4 | 1, 5776, 30276, 55487601, 290736601, 532791965476, 2791652838976, 5115868397039401, 26805450269137401, 49122567815580389376, 257385930692604511876, 471674891049334501775401, 2471419679704938253922401, 4529022254733142070467037476, 23730571507140886421558408976, 43487671218272739111289992095601, 227860945140147111714865589091601, ... | |
64 | 4 | 1, 64, 625, 48400, 450241, ... | |
66 | 4 | 1, 1223236, 5107600, 1629005505625, 6801867425521, 2169369437921667136, 9058142076710164516, 2888979651650786027844601, ... | |
68 | 4 | 1, 400, 41616, 4289041, 17514225, ... | |
96 | 4 | 1, 14400, 46656, 132733441, 429940225, ... | |
128 | 4 | 1, 148225, 408321, 9563079681, 26342913025, 616952522883841, 1699486690978561, 39802075051765530625, 109640684355448463361, 2567791069272648920349441, 7073359108807915474785025, 165658473003253597395658798081, 456330689435993174584833131521, 10687290724764111513110882779540225, 29439718091200304556358009172652801, 689479873651773417153581894243599769601, 1899273972479365758712887429179690164225, ... | |
132 | 4 | 1, 784, 262144, 10597261249, 28731945025, ... | |
140 | 4 | 1, 1002001, 2637376, 1023640086001, ... | |
156 | 4 | 1, 18496, 288456256, ... |
У неким случајевима, као када је с=10 и т=4, не постоје други бројеви у оба сета осим 1.
Проблем налажења бројева који припадају трима полигоналним сетовима је тежи. Компјутерско претраживање за пентагоналне квадратне троугаоне бројеве је избацило само тривијалну вредност 1, путем доказа да не постоје други бројеви који су се појавили у резултатима претраживања.[3]
Број 1225 је хекатоникоситетрагоналан (с=124), хексакотагоналан (с=60), икосиенегоналан (с=29), хексагоналан, квадратни и троугаони.
Види још
уредиРеференце
уреди- ^ а б в г д ђ е ж „Архивирана копија” (PDF). Архивирано из оригинала (PDF) 15. 06. 2011. г. Приступљено 15. 01. 2016.
- ^ „Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers” (PDF). Архивирано из оригинала (PDF) 29. 05. 2013. г. Приступљено 15. 01. 2016.
- ^ Weisstein, Eric W. „Pentagonal Square Triangular Number”. MathWorld.
Литература
уреди- The Penguin Dictionary of Curious and Interesting Numbers, David Wells (Penguin Books, 1997) [[[Međunarodni standardni broj knjige|ISBN]] 978-0-14-026149-3.].
- Polygonal numbers at PlanetMath Архивирано на сајту Wayback Machine (20. фебруар 2016)
- F. Tapson (1999). The Oxford Mathematics Study Dictionary (2nd изд.). Oxford University Press. стр. 88–89. ISBN 978-0-19-914567-6.
- Weisstein, Eric W. „Polygonal Numbers”. MathWorld.
Спољашње везе
уреди- Hazewinkel Michiel, ур. (2001). „Polygonal number”. Encyclopaedia of Mathematics. Springer. ISBN 978-1556080104.
- Polygonal Numbers: Every s-polygonal number between 1 and 1000 clickable for 2<=s<=337 Архивирано на сајту Wayback Machine (29. април 2012)
- Polygonal Numbers on the Ulam Spiral grid на сајту YouTube
- Polygonal Number Counting Function: http://www.mathisfunforum.com/viewtopic.php?id=17853